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ABSTRACT
A method for the estimation of population dynamic history from sequence data is described and used

to investigate the past population dynamics of HIV-1 subtypes A and B. Using both gag and env gene
alignments the effective population size of each subtype is estimated and found to be surprisingly small.
This may be a result of the selective sweep of mutations through the population, or may indicate an
important role of genetic drift in the fixation of mutations. The implications of these results for the spread
of drug-resistant mutations and transmission dynamics, and also the roles of selection and recombination
in shaping HIV-1 genetic diversity, are discussed. A larger estimated effective population size for subtype
A may be the result of differences in time of origin, transmission dynamics, and/or population structure.
To investigate the importance of population structure a model of population subdivision was fitted to
each subtype, although the improvement in likelihood was found to be nonsignificant.

HUMAN immunodeficiency virus (HIV) type-1 cur- ated with transmission by needle sharing among intrave-
nous drug users (IDUs) or male homosexual sex. Theserently infects .30 million people, and it is esti-
subtypes may therefore be expected to show differentmated that more than 16,000 new infections are gener-
patterns of genetic diversity, as a result of differences inated every day (UNAIDS and WHO 1998). Global viral
their epidemiological history and mode of transmission.isolates from this pandemic have revealed extensive ge-

The inference of past population dynamics from ran-netic diversity, but restriction of this diversity into dis-
domly sampled genetic sequence data can be basedtinct viral subtypes (Myers et al. 1991; Louwagie et al.
on either the genealogical structure relating sampled1993). HIV-1 represents one of a number of lineages
sequences (e.g., Felsenstein 1992; Lundstrom et al.of primate lentiviruses (Sharp et al. 1994) and can itself
1992; Fu and Li 1993; Fu 1994; Griffiths and Tavarebe divided into an M and O group (McCutchan et al.
1994a,b; Kuhner et al. 1995, 1998) or summary statistics,1996), and most recently an N group (Simon et al. 1998).
such as the number of segregating sites or the distribu-Most infections are due to the M group, which is cur-
tion of pairwise differences (Watterson 1975; Tajimarently classified into 10 further subtypes, A through J
1983; Rogers and Harpending 1992; Griffiths and(McCutchan et al. 1996). The reason for the existence
Tavare 1996). The former approach has the advantageof subtypes is unclear. They do not correlate with classi-
that it makes full use of the available data, and conse-cal neutralization serotype (Weber et al. 1996; Janssens
quently estimators of population dynamic parameterset al. 1997), making their maintenance by epistatic selec-
tend to have a smaller variance when the number oftion of epitopes due to the immune system an unlikely
sequences sampled is finite (Felsenstein 1992; Fu andexplanation (Gupta et al. 1996). It seems more probable
Li 1993). However, the latter approach is computation-that they simply reflect the past population dynamic
ally much faster, and can allow easier implementationhistory of the virus.
of complex population dynamic and mutational models.Consider the two subtypes, A and B, for which large

In this article a statistical framework for the inferenceamounts of sequence data are available due to their
of past population dynamics based on summary statisticsdominance of the HIV-1 pandemic. Subtype A is com-
is described and used to investigate the population dy-mon throughout Africa and is spread predominantly by
namics of HIV-1 subtypes A and B. This framework isheterosexual sex. Subtype B, in contrast, is found mainly
designed to be flexible and allows not only populationin the United States and parts of Europe (although it
dynamic parameter estimation, but also the fit of differ-has also been found in China, Japan, South America,
ent population dynamic and mutational models to beAustralasia, and Southeast Asia), and is usually associ-
tested. Population dynamic models of the epidemic
spread of the virus are implemented, with or without
further subdivision of the subtypes into partially isolated
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used (following their demonstrated importance in HIV-1 reproduction s2 5 1.0 (Fisher 1930; Wright 1931),
while for Moran’s (1958) overlapping generationsevolution; Eigen and Nieselt-Struwe 1990; Leitner et

al. 1997). The performance of the estimator of effective model s2 5 2N21
x ].

Migration with rate mi,jk, where mi,j is the migrationpopulation size is investigated using Monte Carlo simu-
lation. rate per generation out of deme i into deme j. In the

implementation here the migration rate is constantEstimates of the rate of spread of the two subtypes
and their effective population sizes are obtained from for all i and j and assumed to be independent of

deme size Nx (thus mi,j 5 m).both the gag and the env genes. The latter parameter
is important because it determines the relative roles of

If time is measured in units other than generations (e.g.,genetic drift and selection in determining the evolution
years), and g is the generation time in these units, thenof HIV-1. In particular, the spread of drug-resistant mu-
assuming that the probability of an event occurring intations, which may be selectively disadvantageous in the
a unit time is small, we can calculate the probability ofabsence of the drug (e.g., Goudsmit et al. 1996, 1997),
nothing occurring in a unit time asis dependent on the relative importance of genetic drift

(Leigh Brown 1997; Leigh Brown and Richman
Pnothing ≈ 11 2

m
g 2

ki

11 2 1ki

22 s2

gNt
21997). The parameter estimates for subtypes A and B are

contrasted, and reasons for their differences discussed.
≈ 1 2

mki

g
2 1ki

22 s2

gNt

, (1)

THEORY where Nt is the deme size at time t. Because the deme
has been growing exponentially, the deme size at timeCoalescent process: If we take K sequences, randomly
t into the past is given by Nt 5 N0e2lt, where N0 is thesampled from a large population of size N, it is possible
deme size at time t 5 0, and l is the exponential growthto model their evolutionary or genealogical relation-
rate per unit time. Given that an event has occurred atships with a simple process known as the coalescent
time a, then the probability that nothing occurs within(Kingman 1982a,b,c). This process is concerned with
the next x time units, in other words that the timethe rate at which sampled lineages coalesce when follow-
between events, T, is greater than x, is given bying a genealogy backward in time. Under the assump-

tion of neutrality (or more specifically, exchangeability
in offspring number; Kingman 1982c), this rate of co- P(T . x) 5 p

n5a1x

n5a
31 2

mki
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gN0e2ln4
alescence of the sampled lineages is dependent solely
on the dynamics of the population, and is independent

≈ exp32 o
n5a1x

n5a
1mki

g
1 1ki

22 s2

gN0e2ln24. (2)of the mutational process. Conversely, the genealogy of
randomly sampled sequences can therefore be used to

If we switch to continuous time, this then becomesmake inferences about the dynamics of the population
from which they were sampled, given a suitable coales-

P(T . x) 5 exp32#
n5a1x

n5a 1 mki

g
1 1ki

22 s2

gN0e2ln24cent model, and with a mutational process specified a
priori.

In this article a model of the coalescent process for 5 exp32 mkix
g

2 1ki

22 s2

gN0l
(el(a1x) 2 ela)4. (3)

an expanding, subdivided haploid population is used,
of which a panmictic (unsubdivided) model is a special

The cumulative density function (cdf) for an eventcase. The island model of subdivision due to Wright
occurring within the next x time units is simply 1 2(1931) is implemented, and it is assumed that selection
P(T . x). Because the area under the cdf must sum toand recombination are absent (see discussion). If we
one, the distribution of T can be obtained by settingfollow a single subpopulation or deme backward in time
(3) equal to a uniformly distributed random numberthere are therefore two types of event:
between 0 and 1 and solving for x. If we ignore popula-
tion subdivision and migration, then this cdf simplifiesCoalescence with rate
to that used by Slatkin and Hudson (1991, p. 559) to
simulate coalescent times.1ki

22s2YNx,
To generate times between events for the entire subdi-

vided population, consisting of L demes, we calculate
where ki is the number of lineages under consider- min[xi] for all i {i 5 1, 2, . . . L}, and assume that an
ation in the ith deme, Nx the population size at genera- event has occurred at this time in the corresponding
tion x, and s2 the variance in the number of offspring deme.
had by each member of the population [thus for As for any population dynamic model where the pop-
larger s2 the chance of having the same parent in the ulation or deme size declines into the past, the coales-

cent approximations, based on the assumption that notpreceding generation increases; under Wright-Fisher
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more than one event can occur per unit time, will begin that the probability of the data given the model can be
given byto break down as N becomes smaller. However, for

an exponentially growing population most coalescent
events tend to occur at time t 5 ln(2N0s22l)/l (assum- P(ko, S 2

k,o|Q) ~
1
n o

i5n

i51

Ii (Q), (6)
ing g 5 1), at which time the population size is approxi-
mately 1/l and is independent of N0 (Slatkin and where n is a large number corresponding to the number
Hudson 1991). Given that these events occur in a short of simulations under Q. Because the likelihood L
space of time, the effect of the breakdown of the coales- (Q|ko, S 2

k,o is by definition proportional to P(ko, S 2
k,o|Q)

cent approximation on the total genealogical structure (Fisher 1921; Edwards 1992), maximization of the
should therefore be minimal. right-hand side of Equation 6 over Q gives the maxi-

Given that an event (migration, M, or coalescence, mum-likelihood estimate (MLE), Q̂. For small n, vari-
C) has occurred in the ith deme, the probability that it ance in the simulated k and S 2

k can translate into bias
is a migration event is in Q̂. For example, the variance in k and S 2

k depends
on the total genealogical length, which in turn is linearly

P(M |M or C) 5
mkix

g Y3mkix
g

proportional to the effective population size, N0. Thus,
for the above method with a finite number of simula-
tions, as the estimator N̂0 (N0 P Q) increases, so too

1 1ki

22 s2

gN0l
(el(a1x) 2 ela)4. does its variance, leading to an upward bias. However,

as n → ∞ and ] → 0, the variance is expected to tend(4)
to zero, and the estimator becomes unbiased.

Using Equations 3 and 4, it is possible to simulate It is possible to calculate the region of the parameter
gene genealogies under a range of population dynamic space about MLEs where simple hypotheses would not
scenarios. Sequences can subsequently be evolved down be rejected at the 95% significance level using the likeli-
these gene genealogies, given a suitable substitution hood ratio. This space determines the set of admissible
model, to generate sets of aligned sequences. A program hypotheses (sensu., Wilks 1938), which are termed here
to simulate sequence alignments under certain popula- approximate confidence limits or intervals (although they
tion dynamic scenarios and mutational models, called do not represent confidence limits in the strictest sense
Treevolve, is available on the World Wide Web at http:// where the type I error rate should equal the significance
evolve.zoo.ox.ac.uk/. level, a). At a confidence limit we are effectively re-

Parameter estimation: Sequence alignments, simu- stricting the parameter(s) of interest to a particular
lated under certain population dynamic models, can be value(s), uR. We can therefore calculate the likelihood
compared to observed data to not only test the fit of ratio as
these models, but also to estimate their associated pa-

L 5 max[ln L(uR|ko, S 2
k,o)]rameters. In the method for estimating population dy-

2 max[ln L(Q|ko, S 2
k,o)]. (7)namic parameters described here (see also Grassly and

Holmes 1998), summary statistics are used to make this
By definition, uR is nested in Q and hence for large n,comparison. These summary statistics are the mean and
22L is approximately x2-distributed, with the number ofvariance of the distribution of pairwise differences, and
degrees of freedom equal to the number of parameterswere used because of their well-documented respon-
restricted (Wilks 1938). Thus, for example, the 95%siveness to changes in population dynamics (Wat-
confidence limits about a single MLE are defined byterson 1975; Hudson 1987; Slatkin and Hudson
the uR, which satisfy L 5 21.92.1991; Rogers and Harpending 1992; Simonsen et al.

As the number of estimated parameters increases, the1995; Hey 1997). These can be calculated for the ob-
confidence interval becomes wider. Both the populationserved data (ko and S 2

k,o, respectively), and for sets of
parameters and the two summary statistics used to esti-data simulated under a particular coalescent and muta-
mate them are nonindependent to differing extents.tional model (which we will denote Q, giving kQ,i and
Thus it is unclear exactly how many degrees of freedomS 2

k,Q,i; i 5 1, 2, 3, . . .). To calculate an approximate
there are, and whether two unique population geneticlikelihood of the model given ko and S 2

k,o, define the
parameter estimates can be obtained from the two sum-index, Ii (Q), as
mary statistics. Fortunately, likelihood surfaces can be
calculated about MLEs to reveal the range of plausible

Ii(Q) 5 51 if (kQ,i 2 ko)2 1 (S 2
k,Q,i 2 S 2

k,o)2 , ] ,

0 otherwise, parameter estimates (those with a likelihood where L(5)
is less than the critical, 1⁄2x2-distributed, value).

Because of the assumption of neutrality made by thewhere ] is an arbitrary small number (following Weiss
and von Haeseler 1998). This gives a measure of the coalescent process, the process of mutation can be de-

coupled from that generating the gene genealogygoodness-of-fit of the model Q, to the observed data
(ko and S 2

k,o). It therefore seems reasonable to assume (Kingman 1982a,b,c). The parameters governing the
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raneous with a single rate of substitution, and one where themutational process can therefore be calculated indepen-
sequences were not constrained (and thus substitution ratesdently and directly from the sequence data, using ex-
down each branch could vary). Using the likelihood-ratio sta-

plicit substitution models (equivalent to mutational tistic the goodness-of-fit of the coalescent assumption of con-
models under neutrality). The procedure used here temporary tips and a molecular clock were assessed. The con-

strained tree is a special case of the unconstrained tree, whereestimates the parameters of a substitution model chosen
the unconstrained tree has k 2 2 extra parameters, which area priori, at the same time as the branch lengths and
free to vary (Felsenstein 1981). Thus the significance of thetopology of the phylogenetic tree linking the sampled
likelihood ratio was assessed using the x2-distribution with k 2

sequences, by maximizing their likelihood given the 2 d.f. (Wilks 1938).
observed sequence data (for a description see Swof- The substitution rate of the gag and env genes of the virus,

m, was set to 5 3 1023 per site per year for all estimatesford et al. 1996). The validity of this procedure depends
of population dynamic parameters, consistent with previouson the accuracy of the chosen substitution model, and
estimates for these genes (Li et al. 1988). This parameter isof the maximum-likelihood (ML) tree topology. The
completely confounded with the effective population size N0,former is improved by using a wide range of testable and hence estimates of N0 depend on the accuracy of m. Al-

substitution models. In the case of the latter, the accu- though the codon-based structure of the genes has been ig-
nored, the inference of population dynamic history relies onracy of the tree topology tends to have little effect on
the shape of the genealogy relating the sampled sequences,the inferred substitution model unless the deepest bifur-
which is likely to remain the same for all three codon positionscation of the tree (at the root) partitions the taxa incor-
due to linkage. Selection does, however, play a role in shaping

rectly (e.g., see Sullivan et al. 1996), which is unlikely some of the diversity of HIV-1, and the implications of this for
for any method of phylogenetic reconstruction. Further- the analysis presented here are considered in the discussion.

Inference of population dynamic history: Initially a panmic-more, even if recombination occurs, invalidating a
tic coalescent model was fitted to each of the two HIV-1 sub-strictly bifurcating phylogeny, it is unlikely to cause an
types. Such a model is simply derived from Equation 3 byincorrect phylogenetic partition at such a deep level.
setting m 5 0 and considering only a single deme. Under this
population dynamic model there are two free parameters to be
estimated: the exponential growth rate l, and the compound

MATERIALS AND METHODS parameter gs22N0, which determines the rate of coalescence.
This latter parameter can be defined as the current real-timeSequence data: Complete sequences of the gag and env
effective population size and is denoted throughout this articlegenes from subtypes A and B of HIV-1 were extracted from
as Nt. The real-time effective population size determines thethe Los Alamos HIV sequence database (Myers et al. 1996),
probability that two randomly sampled gene sequences haveand the published alignments used. Sequences previously
a common ancestor within the last year (≈N 21

t , for large Nt)demonstrated to be intersubtype recombinants were removed
and is analogous to Wright’s (1931) effective population(including gag sequences isolated in Thailand, which are sub-
number, Ne, which determines the probability that two ran-type A in origin, but constitute the recombinant subtype E;
domly chosen individuals shared a common ancestor in theGao et al. 1996; McCutchan et al. 1996). In addition, those
preceding generation (≈N 21

e ). Because each sequence in thesequences cloned from a common source (patient or isolate)
sample of HIV-1 sequences can be considered to representwere removed to promote the random sampling of the se-
the viral population from an infected patient, the “individual”quences. Despite this removal it is likely that sequences were
of the population genetic model implemented here is an in-not sampled entirely randomly with respect to geographic
fected patient. Infected individuals transmit their virus toorigin. The effect of this on estimates of population parame-
other individuals to generate more “offspring” whose viralters is considered in the discussion.
sequence resembles that of the “parent.” This coalescentIn total, 13 env and 23 gag sequences were obtained for
model of the transmission process allows variation in offspringsubtype A, and 54 env and 26 gag sequences for subtype B.
number (i.e., s2 . 1), but assumes that there is no correlationThe accession numbers, dates, and places of isolation of these
across generations in the number of offspring had by a genea-sequences are available upon request from the authors. All
logical lineage (no Hill-Robertson effect; Felsenstein 1974).sequences were isolated between 1983 and 1996 about a mean
This latter assumption seems valid given that there is so farisolation date of 1991 (SD 5 3.65 yr). The coalescent models
little evidence for the existence of HIV-1 genetic factors de-described here assume sequences are isolated at the same time.
termining transmission rates, or viral virulence. The censusThe effect of noncontemporaneous-isolation-date estimates of
population size, N, for this study is therefore the number ofpopulation parameters is analogous to the effects of a substitu-
individuals infected by HIV-1 subtypes A and B. The effectivetional process that is more stochastic than the assumed Poisson
population size may be smaller or bigger than N, determiningprocess (see discussion).
the role of genetic drift in the fixation of mutations. It isPhylogenetic relationships and inference of substitution
completely confounded with the substitution rate, and henceprocess: Phylogenetic trees for the four sets of aligned se-
when estimating l any error in m can be accounted for byquences were inferred at the same time as the substitution
allowing Nt to vary (although of course any error in m willprocess, using the maximum likelihood method implemented
affect the actual estimates of Nt).in a test version of PAUP* made available by the author David

MLEs of Nt and l for the four alignments were obtainedSwofford. The general reversible substitution model was used
and likelihood surfaces about the estimates produced. Using(Lanave et al. 1984; Rodriguez et al. 1990), together with a
the x2-approximation to the likelihood-ratio statistic z95%discrete gamma model of rate heterogeneity with four rate
confidence limits about these estimates were calculated. Subse-categories (Yang 1994). In each case the parameters govern-
quently the exponential growth rate (l) was fixed at 0.693 yr21,ing the relative rate of substitution between the different nu-
and estimates of the real-time effective population size werecleotides and the gamma shape parameter, a, were estimated
obtained. This growth rate is equivalent to a doubling timefrom the data. For each alignment two trees were constructed,

one where sequences (tips) were constrained to be contempo- of 1 yr, a value consistent with that observed for the incidence
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TABLE 1

Maximum-likelihood estimated substitution parameters for constrained (clock) and unconstrained phylogenies inferred
from the env and gag genes isolated from HIV-1 subtypes A and B

Subtype A Subtype A Subtype B Subtype B
Parameters env gene gag gene env gene gag gene

Base frequencies pA, pC, pG, pT 0.346, 0.175, 0.370, 0.188, 0.343, 0.174, 0.372, 0.189,
0.233, 0.247 0.247, 0.195 0.235, 0.248 0.248, 0.191

Relative rate parametersa inferred 2.35, 4.55, 0.770, 1.66, 6.98, 0.944, 3.15, 5.70, 0.994, 1.10, 3.58, 0.570,
from constrained phylogeny 0.750, 4.36 0.663, 8.73 1.16, 5.19 0.298, 4.98

Gamma parameter, a, from
constrained phylogeny 0.339 0.350 0.298 0.265

Relative rate parameters inferred 2.31, 4.58, 0.762, 1.63, 6.80, 0.912, 3.26, 5.86, 1.01, 1.09, 3.76, 0.579,
from unconstrained phylogeny 0.807, 4.28 0.653, 8.32 1.27, 5.46 0.333, 4.73

a from unconstrained phylogeny 0.291 0.386 0.323 0.240

a The five relative rate parameters of the general reversible model of nucleotide substitution (Lanave et al. 1984; Rodriguez
et al. 1990) are in the order A → C, A → G, A → T, C → G, C → T, with G → T constrained to 1.0 (because parameters are
relative to one another).

of HIV-1 infection (where a range from 4.9 to 15.6 mo is seen; phylogeny is very stringent (powerful). A single anoma-
May and Anderson 1989). lous branch length can cause rejection of the clock. In

The subdivided population coalescent model with two
contrast, the method for inferring population parame-demes was also fitted to the observed sequence data. This
ters described here is based on summary statistics, whichmodel has three free parameters: l, Nt, and the migration

rate, M 5 m/g (where l and M have units per year, and Nt are less sensitive to such rate heterogeneity. Thus, de-
is the real-time effective deme size). Although nonunique due spite the rejection of a clock by the likelihood ratio, a
to the use of only two summary statistics (ko and S 2

k,o), and coalescent analysis is considered appropriate (see dis-therefore only 2 d.f., MLEs of these parameters were obtained
cussion for a consideration of the implications of rateand the likelihood at these MLEs recorded. The likelihood
heterogeneity for estimates of population parameters).ratio of the subdivided to the unsubdivided model was calcu-

lated for each sequence alignment and its significance assessed The substitution processes inferred from both the
using the x2-approximation with 1 d.f. (because there is one constrained and unconstrained phylogenies are shown
additional free parameter, M).

in Table 1. It can be seen that constraint of the tips ofPerformance of N̂t and the x2-approximation to the likeli-
the phylogeny has little effect on the estimates of thehood ratio: The performance of the estimator of the real-time

effective population size and the validity of the x2-approxima- substitution parameters, despite the lack of fit of a mo-
tion to the likelihood ratio were assessed using simulations. lecular clock. Adenosine (A) is more common than the
For each value of Nt, which was estimated from HIV-1 with other nucleotides, a result of the preference for G to Athe doubling time set at 1 yr (i.e., for A and B subtypes, gag

substitution in the HIV-1 genome (Vartanian et al.and env genes), 100 sequence alignments were simulated with
1994). The gamma parameter, a, governing rate hetero-the relevant number of sequences and the mutational parame-

ters in Table 1. For each sequence alignment Nt was estimated geneity along the sequences is ,0.4 in all cases, indicat-
and the ML value recorded. The likelihood of the actual Nt ing a fair degree of rate heterogeneity (in agreement
under which the data were simulated was also recorded, and

with estimates from other gag and env alignments;the ratio to the ML value calculated. In this way the perfor-
Leitner et al. 1997). This heterogeneity is most likelymance of both the estimator and the x2-approximation to the

likelihood ratio could be assessed. a result of functional constraint at certain positions,
although there may also be a role of positive selection
(see discussion).

RESULTS The phylogenetic trees constrained to have contem-
poraneous tips for the two genes from each subtype arePhylogenetic relationships and inference of substitu-
shown in Figure 1. They have a fairly pronounced bush-tion process: For each of the four alignments a molecu-
or star-like topology, which is indicative of exponentiallar clock was rejected using the likelihood-ratio statistic
growth of the population from which the sequences[log-likelihood ratio 5 14.32 (P 5 0.01) and 57.45 (P ,
have been sampled (Slatkin and Hudson 1991). The0.005) for subtype A env and gag genes, respectively,
places of isolation of the sequences are shown on theand 322.01 (P , 0.005) and 52.89 (P , 0.005) for
trees. These can be seen to cluster to a certain extent,subtype B env and gag genes]. This is unsurprising given
indicating a possible role of population subdivision inthe noncontemporaneous nature of the viral isolates
generating the observed sequence diversity.and the possibility of greater-than-Poisson stochasticity

Inferred population dynamic history: Under a pan-in the substitution process. Furthermore, the likelihood-
ratio test of a molecular clock based on a complete mictic model, the population growth rate, l, and the



432 N. C. Grassly, P. H. Harvey and E. C. Holmes

Figure 1.—Maximum-likelihood phyloge-
netic trees inferred for the gag and env align-
ments from HIV-1 subtypes A and B, showing
the place of isolation of the sequences. A ques-
tion mark indicates that the place of isolation
was not recorded, and in such cases the loca-
tion of the authors’ academic institute has
been substituted.

current real-time effective population size, Nt, were coes- ing to a maximum possible doubling time, t1/2, of 17
and 21 mo; Figure 2). This fits with the average t1/2 of thetimated to give the MLEs and z95% confidence limits

shown in Figure 2. It can be seen that the likelihood HIV-1 pandemic estimated from AIDS case reports to
the World Health Organization at z10 mo (May andsurface is ridged, and indeed the confidence limits are

open ended as l and Nt increase. This is expected for Anderson 1989). The maximum possible t1/2 of subtype
A was 42 and 83 mo for the env and gag genes, respec-any coestimate of these two parameters based on the

properties of gene genealogies, and is a result of the tively. Although this suggests a less rapid spread of sub-
type A than subtype B, the confidence limits on thecoupling of the effect of l and Nt for large l. A star-

like phylogeny is produced when l is large, and thus if estimate of l for subtype A will be wider due to fewer
available sequences. Hence, it is difficult to draw conclu-Nt further increases, l can also increase to produce a

genealogy of the same shape and length. However, as sions about differences in the minimum rate of spread
for the two subtypes.l becomes smaller, a more structured phylogeny is pro-

duced, and the coupling of l and Nt breaks down. This Although conclusions about the exact rate of spread
of the two subtypes are difficult, it is clear from Figuretherefore allows a minimum possible l and Nt to be

estimated. In the case of subtypes A and B of HIV-1 it 2 that the ratio of l̂ to N̂t for subtype B is larger than
that for subtype A. This implies that either subtype Bis meaningful to ask what their minimum rate of spread

is. For subtype B this was found to be 0.5 and 0.4 per is spreading at a faster rate than A (1.2 or 3.2 times
faster based on the env and gag genes, respectively), oryear for the env and gag genes, respectively (correspond-



433HIV-1 Population Dynamics

tude, and therefore may indicate an important role for
the stochastic process of genetic drift in the fixation of
mutations. However, it is also possible that selection is
acting to reduce Nt, as will be discussed.

The results of fitting a model of population subdivi-
sion to the data are shown in Table 2. This table gives
the likelihood ratio, L, or support, of the subdivided
model over the panmictic model, and the MLEs of its
associated parameters. The improvement in the fit of
the model when subdivision is added can be seen to be
small, and absent in one case (subtype B, env align-
ment). Although L is on average somewhat higher for
subtype A than subtype B, in no case is the improved
fit significant at the 5% level when L is assessed using
the x2-approximation (1⁄2x2-value for 1 d.f. 5 1.92). Esti-
mates of growth rates are similar to those obtained for
the panmictic model.

Performance of N̂t and the x2-approximation to the
Figure 2.—Approximate 95% confidence limits about the likelihood ratio: The mean estimated Nt for each simu-

MLEs of l and Nt (marked by crosses) for HIV-1 subtypes A lated dataset and the likelihood of the true value, to-
and B, based on gag and env sequence alignments. Because

gether with the number of times the true value waswe are interested in the minimum possible value for l, not
rejected at the 95% significance level (a 5 0.05) usingNt, the confidence limits have been constructed using the x2-

approximation to the likelihood-ratio statistic with 1 d.f. the x2-approximation to the likelihood ratio, are shown
in Table 3. The percentage of cases where the true N̂t

was rejected at the 95% significance level is consistent
that subtype A has a larger current real-time effective with this significance level (the 95% confidence interval
population size than B, or a combination of the two. about the expected a of 0.05 is 0.016–0.113 under the
Given our knowledge of the epidemiology of HIV in binomial distribution with n 5 100). Furthermore, the
Africa and in the United States and Europe, it seems distribution of likelihood ratios was well fitted by a x2-
unlikely that subtype B is growing at a much faster rate distribution (results not shown), as expected given the
than subtype A. Indeed, the doubling time of HIV inci- nesting of the different hypotheses for Nt (see theory:
dence in Africa (where subtype A is found) is similar, if Parameter estimation).
somewhat shorter, than in the United States and Europe It can be seen that the estimates of Nt are biased
(where subtype B is found). If t1/2 is fixed at 1 yr, consis- upward, although the true Nt falls within the 95% con-
tent with this epidemiological data, it is possible to esti- fidence limits at the correct frequency. This upward bias
mate the corresponding Nt that maximizes the likeli- is a result of the finite number of simulations carried
hood for each subtype, as shown in Figure 3. This figure out when calculating each likelihood value (in this case,
clearly demonstrates that subtype A must have a larger n 5 20 in Equation 6). Simulated values of the summary
Nt than subtype B if they have been growing at the statistics k and S 2

k under a large Nt have a high variance
same rate, although for the env alignments the 95% and so can result in a reasonable likelihood for a large
confidence limits overlap. estimated N̂t even if the sequence data are from a popu-

Figure 3 also reveals that both subtypes have a very lation with a small Nt. Conversely, simulations under a
low current real-time effective population size, Nt, de- small Nt have a low variance, and so the likelihood for
spite the large numbers of individuals infected with a small N̂t is unlikely to be large for data sampled from
these subtypes. If HIV-1 has been spreading with a dou- a big population. As n → ∞ and ] → 0, this variance
bling time of about 1 yr, then the 95% confidence limits will tend to zero and the bias will disappear.
about N̂t for the env and gag alignments from subtype It can be concluded that the small Nt reported here
A range from 2.4 3 104 to 5.8 3 106, while for subtype B for HIV-1 subtypes A and B are not a result of bias in
they range from 2.6 to 8.8 3 104. At the lower confidence the method, which would tend to result in slight over-
limits of N̂t the coalescent approximations begin to rather than underestimation of Nt.
break down. However, at the mean N̂t for subtypes A
and B of z105 and z102, respectively, the approxima-

DISCUSSIONtions are valid, and at the upper confidence limits for
each subtype (5.8 3 106 and 8.8 3 104) the approxima- The analysis of gag and env sequences presented here
tions will be accurate. These low values of N̂t are robust reveals a small current real-time effective population
to error in the specified mutation rate m (5 5 3 1023), size, Nt, for subtypes A and B of HIV-1, of z105 and

z102, respectively. This real-time effective populationwhich is unlikely to vary by more than an order of magni-
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Figure 3.—Likelihood surfaces
about the MLE of Nt on a log scale,
for HIV-1 subtypes A and B based on
the env and gag alignments, with l
fixed at 0.693 (corresponding to a
doubling time of 1 yr). N̂t for subtype
B was 17.8 and 2.1 3 103 for the gag
and env genes, respectively, while for
subtype A it was 8.3 3 105 and 1.2 3
105, respectively. Approximate 95%
confidence limits about N̂t, calcu-
lated using the x2-approximation (1
d.f.), are shown. These are 2.6 to 400
and 23 to 8.8 3 104 for subtype B gag
and env alignments, respectively, and
2.4 3 104 to 5.8 3 106 and 2.6 3 104

to 2.8 3 105 for subtype A.

size can be converted to Wright’s (1931) effective pop- rope, where HIV-1 is estimated to infect more than 1.4
million people (UNAIDS and WHO 1998).ulation size, Ne, by dividing by the generation time, g.

However, it is unclear what the generation time is for Why is Ne small? Two features of HIV-1 may be impor-
tant in causing a small effective population size: theHIV-1 infections. Rates of partner change for homosex-

uals and heterosexuals tend to be on the order of 1 yr transmission dynamics and/or natural selection. The
transmission dynamics of HIV-1 are such that there is(Anderson and May 1988), while it is unclear what the

rate of needle sharing is among IDUs (Kaplan 1989; a large variance in the rate at which new infections are
generated (i.e., a large s2, and hence small Ne). TheBlower et al. 1991). There is a similar ambiguity regard-

ing the probability of transmission in each case. If the different modes of transmission of HIV-1, via homosex-
ual or heterosexual sex, needle-sharing among IDUs,generation time is on the order of 1 yr, then Nt 5 Ne,

while for shorter generation times Nt , Ne. However, or contamination of blood products, are all associated
with different rates of transmission of the virus. Foreven for a very short generation time of 1 mo, the esti-

mated Nt imply that the Ne of subtypes A and B is z106 example, transmission of the virus through a susceptible
network of needle-sharing IDUs is likely to be initiallyand z103, respectively. Both these estimates fall below

the census size of HIV-1 infections, particularly for sub- more rapid than through a susceptible heterosexual
population (Kaplan 1989; Blower et al. 1991). How-type B that predominates in the United States and Eu-

TABLE 2

Fit of model of subdivision to HIV-1 subtypes A and B

Subtype/ 2ln L for 2ln L for Likelihood
gene panmixis subdivision ratio (L) N̂t l̂ M̂

A env 0.931 0.619 0.312 3.2 3 106 0.868 0.76
A gag 0.274 0.094 0.180 1.32 3 107 0.749 1.0
B env 1.109 1.109 0.000 7.5 3 108 1.61 2.8
B gag 0.186 0.117 0.069 2.4 3 106 1.91 1.1

The log likelihoods for the fit of the panmictic and subdivided population dynamic models to the gag and
env alignments from subtypes A and B, together with parameter estimates for the latter model. The likelihood
ratio of the subdivided to the panmictic model is given and can be seen to be less than the 1⁄2 x2-critical value
in all cases. Parameters estimated are the current real-time effective deme size, Nt, the growth rate of the
demes, l, and the migration rate M.
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TABLE 3

Performance of N̂t and the x2-approximation to the likelihood ratio

Gene env gag env a gag

Subtype A A B B
Actual Nt 1.2 3 105 8.3 3 105 2.1 3 103 17.8
Mean N̂t 1.96 3 105 3.1 3 106 7.8 3 103 72.7
% cases actual Nt outside

confidence limits 5 3 4 1

The mean estimated Nt for sequence alignments simulated under known Nt’s, together with the number
of times the likelihood of the known Nt was significantly worse than the estimated (maximum-likelihood)
value. The four known Nt’s used correspond to the values estimated for HIV-1 subtype A and B, gag and env
genes, when the doubling time was set to 1 yr. In each case the number of simulated sequence alignments
used was 100, and the number of sequences in each alignment corresponded to the number of sequences
used for the original estimate.

a For the subtype B env alignment 25 sequences were simulated in each alignment rather than the 54 used
originally to estimate Nt, to save computational time.

ever, even within a sexual mode of transmission, there to make inferences result in a poor improvement in the
likelihood when the subdivided model is assessed. Themay be substantial heterogeneity in the rate of spread

due to variation in partner exchange rates and transmis- use of a genealogy-based method (sensu., Griffiths and
Tavare 1994b; Kuhner et al. 1998), where place ofsion probabilities (Anderson et al. 1992; Service and

Blower 1995). For instance, with regard to the former, isolation is an explicit part of the model, would be likely
to result in improved power in testing the fit of a modelfor the average rate of homosexual partner exchange

(8.7 per year) in England and Wales, the variance is of subdivision.
The analysis of the gag and env genes also reveals az600 per year (Anderson and May 1988). With regard

to the latter, there is substantial evidence for heteroge- larger N̂t for subtype A (found in Africa) than subtype
B (found in the United States and Europe), althoughneity in the susceptibility of different people to infec-

tion. For example, z10% of the Caucasian population the confidence limits overlap for the env gene (see Fig-
ure 3). This may simply be the result of a greater age,in the United States possess a 32-bp deletion in the

chemokine receptor CCR5, and are less susceptible to number of infections, and hence diversity of HIV-1 in
Africa than in Europe and the United States. Alterna-HIV-1 infection when homozygous (Dean et al. 1996;

Michael et al. 1997). tively, it may be a result of differences in transmission
dynamics. Subtype B is associated mainly with the AIDSIn an analogous way to heterogeneity in susceptibility,

subdivision of the human population according to geo- epidemic in homosexuals and IDUs in developed coun-
tries, where transmission rates may be more variablegraphic, social, and behavioral barriers may also play a

role in reducing the effective population size below the than for the heterosexual transmission associated with
subtype A (Anderson and May 1988; Blower et al. 1991;census size, N. If the migration rate is high, then a

subdivided population of total size Ne, consisting of L Greenhalgh 1996). A larger value of s2 for subtype B
could therefore explain the smaller estimated Nt.subpopulations or demes, will begin to approximate a

panmictic population of size Ne/L as the migration rate Although transmission dynamics shape the observed
sequence diversity of HIV-1, natural selection is alsoM → ∞ (for lower migration rates, subdivision can inflate

the effective population size, Ne, above N). Subdivision likely to play a role. The high levels of rate heterogeneity
observed along both the gag and env genes (Table 1)of the HIV-1 subtypes A and B is suggested by a certain

degree of clustering of the places of isolation on the suggest an important role of functional constraint. This
is further evidenced by the restricted number of nonsyn-phylogenetic trees relating the sequences (see Figure

1), but a simple two-deme model of population subdivi- onymous as opposed to synonymous changes for these
two genes (the dN:dS ratio is 0.44 and 0.51 for the envsion was not found to give a significantly better fit to

either subtype (see Table 2). This may reflect the mini- subtype A and B alignments, and 0.25 and 0.24 for the
gag alignments). However, although functional con-mal effect subdivision has on patterns of sequence diver-

sity when the population has been growing at a rapid straint can reduce linked genetic diversity (Charles-
worth et al. 1993), such a restriction will be reflectedrate. In such cases, a star-like phylogeny where all coales-

cences occur at approximately the same time will be by a lower estimated substitution rate, m, and therefore
is unlikely to result in a reduction of N̂e (which is con-produced no matter what the level of subdivision, unless

single lineages survive into the past in demes of very founded with m) unless such constraint is accompanied
by occasional selective sweeps of fit mutants throughsmall size (Ne , 1). It is also possible that the particular

model of subdivision and the use of summary statistics the subtype. Such selective sweeps would reduce linked
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variation while maintaining a high substitution rate and size within a coalescent lineage becomes important and
the rate of interhost substitution may be more variablehence could therefore decrease N̂e. Selective sweeps may

be a feature of HIV-1 evolution, but the high frequency than the assumed Poisson process (Araki and Tachida
1997). Such rate heterogeneity is supported by the rejec-at which HIV-1 recombines (Diaz et al. 1995; Robert-

son et al. 1995; Zhu et al. 1995; Moutouh et al. 1996) tion of constrained molecular clock phylogenetic trees
by the likelihood-ratio test (see results). The effect ofwill restrict this reduction in diversity to the vicinity of

the selected mutation. Thus selective sweeps could be this rate heterogeneity may be further enhanced by the
noncontemporaneous nature of the HIV-1 sequencereducing N̂t substantially, but only if they occur fairly

often. So far, little evidence concerning whether such isolates, which can cause sister taxa in the viral genealogy
to have unequal branch lengths. The effect of departuresweeps occur at the subtype level or what their frequency

is has accumulated. from the assumption of a molecular clock and a geneal-
ogy with contemporary tips on estimates of Ne is unclear.Role of recombination: Recombination reduces the

variance of the distribution of pairwise differences, It is not obvious how it could cause a reduction in esti-
mates of N̂e based on summary statistics, given that thewhile little affecting the mean of this distribution. Thus

if recombination is ignored, when l and Ne are coesti- mean sequence diversity is likely to remain the same.
However, for likelihood calculations based on explicitmated, l will be overestimated (the phylogeny simply

becomes more star-like). However, estimates of Ne for representation of the HIV-1 genealogy, a more accurate
model of the substitution process will be required.a fixed l should be little affected because for a star

phylogeny N̂e is mainly determined by the mean of the There is no evidence for systematic differences in the
substitution process or rate between subtypes A and Bdistribution of pairwise differences. The estimates of Ne

for HIV-1 reported here are therefore valid, despite the that may be causing the apparent population parameter
differences.lack of recombination in the coalescent model. In the

future it may be possible to use a coalescent model It is possible that selective pressures within the host
may increase the effect of intrahost polymorphism on(e.g., see Hudson 1987; Grassly and Holmes 1998) to

estimate the rates of recombination within and between observed differences between sampled sequences. For
this reason the large number of immunogenic epitopesHIV-1 subtypes.

Nonrandom sampling: HIV-1 sequences are unlikely along the env protein (reflected by a larger dN:dS ratio
compared with the gag polyprotein; Korber et al. 1996)to be sampled randomly with respect to geographic

origin for political and economic reasons. Because the may explain why the env gene gives a less clear distinc-
tion between subtypes A and B. Selection during pri-estimates of Ne given here are based mainly on mean

sequence diversity, such nonrandom sampling will not mary infection for particular configurations of the env
V3 loop (e.g., see Zhang et al. 1993) will not affectbe too problematic unless subtype diversity is systemati-

cally underrepresented. This will occur when countries the rate of substitution of linked (or unlinked) neutral
variants (Birky and Walsh 1988), and so is unlikely towith prevalent HIV-1 are not included in the sample.

In such cases estimates of Ne will be for the regions have any effect on rates of interhost evolution, and
hence estimates of Ne.that are adequately sampled only. For example, because

partial V3 sequences from China that group with sub- Implications of a small Ne: The small value of N̂e, if not
a consequence of past selective sweeps, has importanttype B (Shao and Wolf 1995) were not included in the

alignment, the estimates of Ne presented here reflect implications for the spread of drug-resistant mutations,
which are typically at a selective disadvantage in thesubtype B diversity in the United States, Europe, and

Japan, but not mainland Asia. absence of the drug (e.g., Goudsmit et al. 1996, 1997).
In general, for populations of constant size Ne, selectiveImportance of intrahost dynamics: Both the substitu-

tion and genealogical processes modeled focus on in- effects that are less than the reciprocal of Ne are negligi-
ble compared to the stochasticity of drift. Thus forterhost evolution. This is because each pair of sequences

sampled from subtypes A and B is likely to be separated HIV-1, depending on the future rate of spread of the
virus, the small N̂e may indicate an important role forby a large number of transmission events. A lineage in

the coalescent model therefore reflects a population genetic drift in the fixation of drug-resistant mutations.
Although the values of selective coefficients for drug-with an effective size of z103 (the estimated intrahost

population size; Leigh Brown 1997; Leigh Brown and resistant mutations seem to be variable (s 5 20.004 to
20.25 within drug-naı̈ve patients; Goudsmit et al. 1996),Richman 1997) punctuated by repeated bottlenecks oc-

curring at transmission (Holmes et al. 1992). For neutral the cases of drug resistance in drug-naı̈ve patients that
have begun to be reported (Conlon et al. 1994; Najeramutations, where substitution rates are independent of

population size, it is therefore reasonable to model the et al. 1995; Goudsmit et al. 1996; Kozal et al. 1996;
Cornelissen et al. 1997) suggest that, at least in someinterhost substitution process with a standard Poisson

model. cases, s is small enough for genetic drift to occur. Of
course, the high mutation rate and rapid turnover ofIf many mutations within the host are nonneutral

(e.g., due to immune surveillance), then viral population HIV-1 within infected individuals (Ho et al. 1995; Wei
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Eigen, M., and K. Nieselt-Struwe, 1990 How old is the immunode-et al. 1995) means that single mutations conferring resis-
ficiency virus? AIDS 4: S85–S93.

tance to drugs are likely to arise by chance even in Felsenstein, J., 1974 The evolutionary advantage of recombination.
drug-naı̈ve patients (Bonhoeffer and Nowak 1997). Genetics 78: 737–756.

Felsenstein, J., 1981 Evolutionary trees from DNA sequences: aHowever, for drug resistance requiring multiple muta-
maximum likelihood approach. J. Mol. Evol. 17: 368–376.tions preexistence is unlikely (Bonhoeffer and Nowak Felsenstein, J., 1992 Estimating effective population-size from sam-

1997) unless the mutations provide some drug resis- ples of sequences—inefficiency of pairwise and segregating sites
as compared to phylogenetic estimates. Genet. Res. 59: 139–147.tance on their own, in which case they may spread and

Fisher, R. A., 1921 On the ‘probable error’ of a coefficient of corre-then be brought together in a single viral genome by lation deduced from a small sample. Metron 1: part 4, 3–32.
recombination. The small N̂e therefore suggests that Fisher, R. A., 1930 The Genetical Theory of Natural Selection. Clarendon

Press, Oxford.drug resistance requiring multiple mutations may arise
Fu, Y. X., 1994 A phylogenetic estimator of effective population sizethrough the stochastic effects of drift. This has impor- or mutation rate. Genetics 136: 685–692.

tant implications for the efficacy of drugs and combina- Fu, Y. X., and W. H. Li, 1993 Maximum likelihood estimation of
population parameters. Genetics 134: 1261–1270.tion drug therapy, because preexistence of a few drug-

Gao, F., D. L. Robinson, S. G. Morrison, H. X. Hui, S. Craig et al.,resistant viruses within an individual implies that even
1996 The heterosexual human immunodeficiency virus type 1

if the drug therapy is effective in dramatically reducing epidemic in Thailand is caused by an intersubtype (A/E) recom-
binant of African origin. J. Virol. 70: 7013–7029.viral load, resistance will quickly emerge (Bonhoeffer

Goudsmit, J., A. de Ronde, D. D. Ho and A. S. Perelson, 1996 Hu-and Nowak 1997; Bonhoeffer et al. 1997).
man immunodeficiency virus fitness in vivo : calculations based
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